Abstract
With the emergence of various new Internet of Things (IoT) devices and the rapid increase in the number of users, enormous services and complex applications are growing rapidly. However, these services and applications are resource-intensive and data-hungry, requiring satisfactory quality-of-service (QoS) and network coverage density guarantees in sparsely populated areas, whereas the limited battery life and computing resources of IoT devices will inevitably become insufficient. Unmanned aerial vehicle (UAV)-enabled mobile edge computing (MEC) is one of the most promising solutions that ensures the stability and expansion of the network coverage area for these applications and provides them with computational capabilities. In this paper, computation offloading and resource allocation are jointly considered for multi-user multi-UAV-enabled mobile edge-cloud computing systems. First, we propose an efficient resource allocation and computation offloading model for a multi-user multi-UAV-enabled mobile edge-cloud computing system. Our proposed system is scalable and can support increases in network traffic without performance degradation. In addition, the network deploys multi-level mobile edge computing (MEC) technology to provide the computational capabilities at the edge of the radio access network (RAN). The core network is based on software-defined networking (SDN) technology to manage network traffic. Experimental results demonstrate that the proposed model can dramatically boost the system performance of the system in terms of time and energy.
Funder
The authors extend their appreciation to the Deanship of Scientific Research at Saudi Electronic University for funding this research work through the project number (8117).
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献