Abstract
We report the impact of yttrium oxide (YOx) passivation on the zinc oxide (ZnO) thin film transistor (TFT) based on Al2O3 gate insulator (GI). The YOx and ZnO films are both deposited by spray pyrolysis at 400 and 350 °C, respectively. The YOx passivated ZnO TFT exhibits high device performance of field effect mobility (μFE) of 35.36 cm2/Vs, threshold voltage (VTH) of 0.49 V and subthreshold swing (SS) of 128.4 mV/dec. The ZnO TFT also exhibits excellent device stabilities, such as negligible threshold voltage shift (∆VTH) of 0.15 V under positive bias temperature stress and zero hysteresis voltage (VH) of ~0 V. YOx protects the channel layer from moisture absorption. On the other hand, the unpassivated ZnO TFT with Al2O3 GI showed inferior bias stability with a high SS when compared to the passivated one. It is found by XPS that Y diffuses into the GI interface, which can reduce the interfacial defects and eliminate the hysteresis of the transfer curve. The improvement of the stability is mainly due to the diffusion of Y into ZnO as well as the ZnO/Al2O3 interface.
Subject
General Materials Science,General Chemical Engineering
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献