Geometric Reduced-Attitude Control of Fixed-Wing UAVs

Author:

Coates Erlend M.ORCID,Fossen Thor I.ORCID

Abstract

This paper presents nonlinear, singularity-free autopilot designs for multivariable reduced-attitude control of fixed-wing aircraft. To control roll and pitch angles, we employ vector coordinates constrained to the unit two-sphere and that are independent of the yaw/heading angle. The angular velocity projected onto this vector is enforced to satisfy the coordinated-turn equation. We exploit model structure in the design and prove almost global asymptotic stability using Lyapunov-based tools. Slowly-varying aerodynamic disturbances are compensated for using adaptive backstepping. To emphasize the practical application of our result, we also establish the ultimate boundedness of the solutions under a simplified controller that only depends on rough estimates of the control-effectiveness matrix. The controller design can be used with state-of-the-art guidance systems for fixed-wing unmanned aerial vehicles (UAVs) and is implemented in the open-source autopilot ArduPilot for validation through realistic software-in-the-loop (SITL) simulations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Almost Global Three-Dimensional Path-Following Guidance Law for Arbitrary Curved Paths;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

2. Special Issue “Advances in Aerial, Space, and Underwater Robotics”;Applied Sciences;2022-12-30

3. Geometric MPC Techniques for Reduced Attitude Control on Quadrotors with Bidirectional Thrust;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

4. A new geometric trajectory tracking controller for the unicycle mobile robot;Systems & Control Letters;2022-10

5. A High-Performance Sensor-Based Control for Complex Maneuvers of Ducted Fan Unmanned Aerial Vehicles;2022 34th Chinese Control and Decision Conference (CCDC);2022-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3