Neuron-by-Neuron Quantization for Efficient Low-Bit QNN Training

Author:

Sher Artem12ORCID,Trusov Anton123ORCID,Limonova Elena23ORCID,Nikolaev Dmitry24ORCID,Arlazarov Vladimir V.23ORCID

Affiliation:

1. Phystech School of Applied Mathematics and Informatics, Moscow Institute of Physics and Technology, 141701 Moscow, Russia

2. Smart Engines Service LLC, 117312 Moscow, Russia

3. Department of Mathematical Software for Computer Science, Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 119333 Moscow, Russia

4. Vision Systems Laboratory, Institute for Information Transmission Problems (Kharkevich Institute) of Russian Academy of Sciences, 127051 Moscow, Russia

Abstract

Quantized neural networks (QNNs) are widely used to achieve computationally efficient solutions to recognition problems. Overall, eight-bit QNNs have almost the same accuracy as full-precision networks, but working several times faster. However, the networks with lower quantization levels demonstrate inferior accuracy in comparison to their classical analogs. To solve this issue, a number of quantization-aware training (QAT) approaches were proposed. In this paper, we study QAT approaches for two- to eight-bit linear quantization schemes and propose a new combined QAT approach: neuron-by-neuron quantization with straight-through estimator (STE) gradient forwarding. It is suitable for quantizations with two- to eight-bit widths and eliminates significant accuracy drops during training, which results in better accuracy of the final QNN. We experimentally evaluate our approach on CIFAR-10 and ImageNet classification and show that it is comparable to other approaches for four to eight bits and outperforms some of them for two to three bits while being easier to implement. For example, the proposed approach to three-bit quantization of the CIFAR-10 dataset results in 73.2% accuracy, while baseline direct and layer-by-layer result in 71.4% and 67.2% accuracy, respectively. The results for two-bit quantization for ResNet18 on the ImageNet dataset are 63.69% for our approach and 61.55% for the direct baseline.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3