Fast Gaussian Filter Approximations Comparison on SIMD Computing Platforms

Author:

Rybakova Ekaterina O.12ORCID,Limonova Elena E.13ORCID,Nikolaev Dmitry P.13ORCID

Affiliation:

1. Smart Engines Service LLC, 117312 Moscow, Russia

2. Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia

3. Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, 119333 Moscow, Russia

Abstract

Gaussian filtering, being a convolution with a Gaussian kernel, is a widespread technique in image analysis and computer vision applications. It is the traditional approach for noise reduction. In some cases, performing the exact convolution can be computationally expensive and time-consuming. To address this problem, approximations of the convolution are often used to achieve a balance between accuracy and computational efficiency, such as with running sums, Bell blur, Deriche approximation, etc. At the same time, modern computing devices support data parallelism (vectorization) via Single Instruction Multiple Data (SIMD) and can process integer numbers faster than floating-point approaches. In this paper, we describe several methods for approximating a Gaussian filter, implement the SIMD and quantized versions, and compare them in terms of speed and accuracy. The experiments were performed on central processing units with a x86_64 architecture using a family of SSE SIMD extensions and an ARMv8 architecture using the NEON SIMD extension. All the optimized approximations demonstrated 10–20× speedup while maintaining the accuracy in the range of 1 × 10−5 or higher. The fastest method is a trivial Stack blur with a relatively high error, so we recommend using the second-order Vliet–Young–Verbeek filter and quantized Bell blur and running sums as more accurate and still computationally efficient alternatives.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3