Efficiency of machine learning algorithms and convolutional neural network for detection of pathological changes in MR images of the brain

Author:

Agafonova Yu.D.1,Gaidel A.V.2,Zelter P.M.3,Kapishnikov A.V.3

Affiliation:

1. Samara National Research University, Moskovskoye shosse 34, 443086, Samara, Russia

2. Samara National Research University, Moskovskoye shosse 34, 443086, Samara, Russia; IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

3. Samara State Medical University, Chapayevskaya 89, 443099, Samara, Russia

Abstract

We compare approaches for the automatic detection of pathological changes in brain MRI images that are visible to the naked eye. We analyse multi-stage approaches based on deep learning and threshold processing. A convolutional neural network was formed, a classifier was built based on the use of an ensemble of decision trees, and an algorithm was created for multi-stage image processing. Because of experimental studies, it was found that the most effective method for recognizing images of magnetic resonance imaging is an approach based on an ensemble of decision trees. With its help, 95 % of the images from the test sample were classified correctly. At the same time, using the convolutional neural network, it was possible to classify correctly all images containing the area of pathological changes. The data obtained can be used in practice for the diagnosis of brain diseases, for automating the processing of a large number of studies of magnetic resonance imaging.

Funder

Russian Foundation for Basic Research

Ministry of Science and Higher Education of the Russian Federation

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3