Affiliation:
1. Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
Abstract
Fungal species identification from metagenomic data is a highly challenging task. Internal Transcribed Spacer (ITS) region is a potential DNA marker for fungi taxonomy prediction. Computational approaches, especially deep learning algorithms, are highly efficient for better pattern recognition and classification of large datasets compared to in silico techniques such as BLAST and machine learning methods. Here in this study, we present CNN_FunBar, a convolutional neural network-based approach for the classification of fungi ITS sequences from UNITE+INSDC reference datasets. Effects of convolution kernel size, filter numbers, k-mer size, degree of diversity and category-wise frequency of ITS sequences on classification performances of CNN models have been assessed at all taxonomic levels (species, genus, family, order, class and phylum). It is observed that CNN models can produce >93% average accuracy for classifying ITS sequences from balanced datasets with 500 sequences per category and 6-mer frequency features at all levels. The comparative study has revealed that CNN_FunBar can outperform machine learning-based algorithms (SVM, KNN, Naïve-Bayes and Random Forest) as well as existing fungal taxonomy prediction software (funbarRF, Mothur, RDP Classifier and SINTAX). The present study will be helpful for fungal taxonomy classification using large metagenomic datasets.
Funder
Indian Council of Agricultural Research, Ministry of Agriculture and Farmers’ Welfare, Govt. of India
Subject
Genetics (clinical),Genetics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献