Ensemble learning-based approach for automatic classification of termite mushrooms

Author:

Duong Thi Kim Chi,Tran Van Lang,Nguyen The Bao,Nguyen Thi Thuy,Ho Ngoc Trung Kien,Nguyen Thanh Q.

Abstract

Termite mushrooms are edible fungi that provide significant economic, nutritional, and medicinal value. However, identifying these mushroom species based on morphology and traditional knowledge is ineffective due to their short development time and seasonal nature. This study proposes a novel method for classifying termite mushroom species. The method utilizes Gradient Boosting machine learning techniques and sequence encoding on the Internal Transcribed Spacer (ITS) gene dataset to construct a machine learning model for identifying termite mushroom species. The model is trained using ITS sequences obtained from the National Center for Biotechnology Information (NCBI) and the Barcode of Life Data Systems (BOLD). Ensemble learning techniques are applied to classify termite mushroom species. The proposed model achieves good results on the test dataset, with an accuracy of 0.91 and an average AUCROC value of 0.99. To validate the model, eight ITS sequences collected from termite mushroom samples in An Linh commune, Phu Giao district, Binh Duong province, Vietnam were used as the test data. The results show consistent species identification with predictions from the NCBI BLAST software. The results of species identification were consistent with the NCBI BLAST prediction software. This machine-learning model shows promise as an automatic solution for classifying termite mushroom species. It can help researchers better understand the local growth of these termite mushrooms and develop conservation plans for this rare and valuable plant resource.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Reference31 articles.

1. Xgboost: extreme gradient boosting14 ChenT. HeT. BenestyM. KhotilovichV. TangY. ChoH. 12015

2. CNN_FunBar: advanced learning technique for fungi ITS region classification;Das;Genes.,2023

3. Mycofier: A new machine learning-based classifier for fungal ITS sequences;Delgado-Serrano;BMC Res. Notes,2016

4. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences;Deshpande;Mycologia,2016

5. Traditional and ethno-medicinal knowledge of mushrooms in West Bengal, India;Dutta;Asian J. Pharm. Clin. Res.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3