The Influence of Soil Fertilization on the Distribution and Diversity of Phosphorus Cycling Genes and Microbes Community of Maize Rhizosphere Using Shotgun Metagenomics

Author:

Enebe MatthewORCID,Babalola OlubukolaORCID

Abstract

Biogeochemical cycling of phosphorus in the agro-ecosystem is mediated by soil microbes. These microbes regulate the availability of phosphorus in the soil. Little is known about the response of functional traits of phosphorus cycling microbes in soil fertilized with compost manure (derived from domestic waste and plant materials) or inorganic nitrogen fertilizers at high and low doses. We used a metagenomics investigation study to understand the changes in the abundance and distribution of microbial phosphorus cycling genes in agricultural farmlands receiving inorganic fertilizers (120 kg N/ha, 60 kg N/ha) or compost manure (8 tons/ha, 4 tons/ha), and in comparison with the control. Soil fertilization with high level of compost (Cp8) or low level of inorganic nitrogen (N1) fertilizer have nearly similar effects on the rhizosphere of maize plants in promoting the abundance of genes involved in phosphorus cycle. Genes such as ppk involved in polyphosphate formation and pstSABC (for phosphate transportation) are highly enriched in these treatments. These genes facilitate phosphorus immobilization. At a high dose of inorganic fertilizer application or low compost manure treatment, the phosphorus cycling genes were repressed and the abundance decreased. The bacterial families Bacillaceae and Carnobacteriaceae were very abundant in the high inorganic fertilizer (N2) treated soil, while Pseudonocardiaceae, Clostridiaceae, Cytophagaceae, Micromonosporaceae, Thermomonosporaceae, Nocardiopsaceae, Sphaerobacteraceae, Thermoactinomycetaceae, Planococcaceae, Intrasporangiaceae, Opitutaceae, Acidimicrobiaceae, Frankiaceae were most abundant in Cp8. Pyrenophora, Talaromyces, and Trichophyton fungi were observed to be dominant in Cp8 and Methanosarcina, Methanobrevibacter, Methanoculleus, and Methanosphaera archaea have the highest percentage occurrence in Cp8. Moreover, N2 treatment, Cenarchaeum, Candidatus Nitrososphaera, and Nitrosopumilus were most abundant among fertilized soils. Our findings have brought to light the basis for the manipulation of rhizosphere microbial communities and their genes to improve availability of phosphorus as well as phosphorus cycle regulation in agro-ecosystems.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3