Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories

Author:

Chukwuneme ChinenyenwaORCID,Ayangbenro AyansinaORCID,Babalola OlubukolaORCID

Abstract

Many studies have shown that the maize rhizosphere comprises several plant growth-promoting microbes, but there is little or no study on the effects of land-use and management histories on microbial functional gene diversity in the maize rhizosphere soils in Africa. Analyzing microbial genes in the rhizosphere of plants, especially those associated with plant growth promotion and carbon cycling, is important for improving soil fertility and crop productivity. Here, we provide a comparative analysis of microbial genes present in the rhizosphere samples of two maize fields with different agricultural histories using shotgun metagenomics. Genes involved in the nutrient mobilization, including nifA, fixJ, norB, pstA, kefA and B, and ktrB were significantly more abundant (α = 0.05) in former grassland (F1) rhizosphere soils. Among the carbon-cycling genes, the abundance of 12 genes, including all those involved in the degradation of methane were more significant (α = 0.05) in the F1 soils, whereas only five genes were significantly more abundant in the F2 soils. α-diversity indices were different across the samples and significant differences were observed in the β diversity of plant growth-promoting and carbon-cycling genes between the fields (ANOSIM, p = 0.01 and R = 0.52). Nitrate-nitrogen (N-NO3) was the most influential physicochemical parameter (p = 0.05 and contribution = 31.3%) that affected the distribution of the functional genes across the samples. The results indicate that land-use and management histories impact the composition and diversity of plant growth-promoting and carbon-cycling genes in the plant rhizosphere. The study widens our understanding of the effects of anthropogenic activities on plant health and major biogeochemical processes in soils.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3