High-Speed Laser Cutting Silicon-Glass Double Layer Wafer with Laser-Induced Thermal-Crack Propagation

Author:

Zhao Chunyang1,Yang Zhihui1,Kang Shuo2,Qiu Xiuhong1,Xu Bin1

Affiliation:

1. Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China

2. New Display Technology and Equipment Center, Jihua Laboratory, Foshan 528200, China

Abstract

This paper studied laser induced thermal-crack propagation (LITP) dicing of a glass-silicon double-layer wafer with high scanning speed. A defocusing continuous laser was used in the experimental system as the volumetric heat source for the glass layer and the surface heat source for the silicon layer. Based on the principle of thermal-crack propagation, the commercial software ABAQUS was used on the simulated analysis, and the results of temperature field and thermal stress field distribution with high and low speed were compared. The experiment was executed in accordance with the simulation parameters. The surface morphology of the cut section was described by optical microscopy and a profilometer, and combined with the results, the non-synchronous propagation process of the crack under high speed scanning was revealed. Most importantly, the scanning section with a nanoscale surface roughness was obtained. The surface roughness of the silicon layer was 19 nm, and that of glass layer was 9 nm.

Funder

National Natural Science Foundation of China

National Natural Science Foundation-Aerospace Joint Fund

Natural Science Foundation of Guangdong Province

Research Committee of the Shenzhen University and Shenzhen Natural Science Foundation University Stable Support Project

Shenzhen Top Talents Start-Up Fund

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3