Design, Analysis and Experiment of a Tactile Force Sensor for Underwater Dexterous Hand Intelligent Grasping

Author:

Zhang Jianjun,Liu Weidong,Gao Li’e,Zhang Yiwen,Tang Weijiang

Abstract

This paper proposes a novel underwater dexterous hand structure whose fingertip is equipped with underwater tactile force sensor (UTFS) array to realize the grasping sample location determination and force perception. The measurement structure, theoretical analysis, prototype development and experimental verification of the UTFS are purposefully studied in order to achieve accurate measurement under huge water pressure influence. The UTFS is designed as capsule shape type with differential pressure structure, and the external water pressure signal is separately transmitted to the silicon cup bottom which is considered to be an elastomer with four strain elements distribution through the upper and lower flexible contacts and the silicone oil filled in the upper and lower cavities of UTFS. The external tactile force information can be obtained by the vector superposition between the upper and lower of silicon cup bottom to counteract the water pressure influence. The analytical solution of deformation and stress of the bottom of the square silicon cup bottom is analyzed with the use of elasticity and shell theory, and compared with the Finite Element Analysis results, which provides theoretical support for the distribution design of four strain elements at the bottom of the silicon cup. At last, the UTFS zero drift experiment without force applying under different water depths, the output of the standard force applying under different water depth and the test of the standard force applying under conditions of different 0 ∘C–30 ∘C temperature with 0.1 m water depth are carried out to verify the performance of the sensor. The experiments show that the UTFS has a high linearity and sensitivity, and which has a regular zero drift and temperature drift which can be eliminated by calibration algorithm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3