Train Me If You Can: Decentralized Learning on the Deep Edge

Author:

Costa DiogoORCID,Costa MiguelORCID,Pinto SandroORCID

Abstract

The end of Moore’s Law aligned with data privacy concerns is forcing machine learning (ML) to shift from the cloud to the deep edge. In the next-generation ML systems, the inference and part of the training process will perform at the edge, while the cloud stays responsible for major updates. This new computing paradigm, called federated learning (FL), alleviates the cloud and network infrastructure while increasing data privacy. Recent advances empowered the inference pass of quantized artificial neural networks (ANNs) on Arm Cortex-M and RISC-V microcontroller units (MCUs). Nevertheless, the training remains confined to the cloud, imposing the transaction of high volumes of private data over a network and leading to unpredictable delays when ML applications attempt to adapt to adversarial environments. To fill this gap, we make the first attempt to evaluate the feasibility of ANN training in Arm Cortex-M MCUs. From the available optimization algorithms, stochastic gradient descent (SGD) has the best trade-off between accuracy, memory footprint, and latency. However, its original form and the variants available in the literature still do not fit the stringent requirements of Arm Cortex-M MCUs. We propose L-SGD, a lightweight implementation of SGD optimized for maximum speed and minimal memory footprint in this class of MCUs. We developed a floating-point version and another that operates over quantized weights. For a fully-connected ANN trained on the MNIST dataset, L-SGD (float-32) is 4.20× faster than the SGD while requiring only 2.80% of the memory with negligible accuracy loss. Results also show that quantized training is still unfeasible to train an ANN from the scratch but is a lightweight solution to perform minor model fixes and counteract the fairness problem in typical FL systems.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference85 articles.

1. The Route to a Trillion Devices. White Paper. ARM https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwit7uqT_8f3AhVCmuYKHWnlAB0QFnoECA0QAQ&url=https%3A%2F%2Fcommunity.arm.com%2Fcfs-file%2F__key%2Ftelligent-evolution-components-attachments%2F01-1996-00-00-00-01-30-09%2FArm-_2D00_-The-route-to-a-trillion-devices-_2D00_-June-2017.pdf&usg=AOvVaw0u3rfw99tKfKFI-1COOBkz

2. Detecting Driver’s Fatigue, Distraction and Activity Using a Non-Intrusive Ai-Based Monitoring System;Costa;J. Artif. Intell. Soft Comput. Res.,2019

3. A survey of deep learning techniques for autonomous driving

4. A user-centric machine learning framework for cyber security operations center

5. A Review of Machine Learning Approaches to Power System Security and Stability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3