Yolo-Pest: An Insect Pest Object Detection Algorithm via CAC3 Module

Author:

Xiang Qiuchi1,Huang Xiaoning1,Huang Zhouxu2,Chen Xingming3,Cheng Jintao4,Tang Xiaoyu134ORCID

Affiliation:

1. School of Data Science and Engineering, Xingzhi College, South China Normal University, Shanwei 516600, China

2. Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3FL, UK

3. School of Electronics and Information Engineering, South China Normal University, Foshan 528000, China

4. School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China

Abstract

Insect pests have always been one of the main hazards affecting crop yield and quality in traditional agriculture. An accurate and timely pest detection algorithm is essential for effective pest control; however, the existing approach suffers from a sharp performance drop when it comes to the pest detection task due to the lack of learning samples and models for small pest detection. In this paper, we explore and study the improvement methods of convolutional neural network (CNN) models on the Teddy Cup pest dataset and further propose a lightweight and effective agricultural pest detection method for small target pests, named Yolo-Pest, for the pest detection task in agriculture. Specifically, we tackle the problem of feature extraction in small sample learning with the proposed CAC3 module, which is built in a stacking residual structure based on the standard BottleNeck module. By applying a ConvNext module based on the vision transformer (ViT), the proposed method achieves effective feature extraction while keeping a lightweight network. Comparative experiments prove the effectiveness of our approach. Our proposal achieves 91.9% mAP0.5 on the Teddy Cup pest dataset, which outperforms the Yolov5s model by nearly 8% in mAP0.5. It also achieves great performance on public datasets, such as IP102, with a great reduction in the number of parameters.

Funder

the National Natural Science Foundation of China

Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3