An Advancing GCT-Inception-ResNet-V3 Model for Arboreal Pest Identification

Author:

Li Cheng1ORCID,Tian Yunxiang1,Tian Xiaolin1,Zhai Yikui2,Cui Hanwen34,Song Mengjie5

Affiliation:

1. Faculty of Innovation Engineering, School of Computer Science and Engineering, Macau University of Science and Technology, Macau 999078, China

2. The Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China

3. State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China

4. School of Computer Science, Zhuhai College of Science and Technology, Zhuhai 519041, China

5. College of Plant Protection, China Agricultural University, Beijing 100107, China

Abstract

The significance of environmental considerations has been highlighted by the substantial impact of plant pests on ecosystems. Addressing the urgent demand for sophisticated pest management solutions in arboreal environments, this study leverages advanced deep learning technologies to accurately detect and classify common tree pests, such as “mole cricket”, “aphids”, and “Therioaphis maculata (Buckton)”. Through comparative analysis with the baseline model ResNet-18 model, this research not only enhances the SE-RegNetY and SE-RegNet models but also introduces innovative frameworks, including GCT-Inception-ResNet-V3, SE-Inception-ResNet-V3, and SE-Inception-RegNetY-V3 models. Notably, the GCT-Inception-ResNet-V3 model demonstrates exceptional performance, achieving a remarkable average overall accuracy of 94.59%, average kappa coefficient of 91.90%, average mAcc of 94.60%, and average mIoU of 89.80%. These results signify substantial progress over conventional methods, outperforming the baseline model’s results by margins of 9.1%, nearly 13.7%, 9.1%, and almost 15% in overall accuracy, kappa coefficient, mAcc, and mIoU, respectively. This study signifies a considerable step forward in blending sustainable agricultural practices with environmental conservation, setting new benchmarks in agricultural pest management. By enhancing the accuracy of pest identification and classification in agriculture, it lays the groundwork for more sustainable and eco-friendly pest control approaches, offering valuable contributions to the future of agricultural protection.

Funder

Wuyi University Hong Kong Macao Joint Research and Development Fund

Science and Technology Development Fund of Macau

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3