An Efficient Pest Detection Framework with a Medium-Scale Benchmark to Increase the Agricultural Productivity

Author:

Aladhadh SulimanORCID,Habib ShabanaORCID,Islam MuhammadORCID,Aloraini MohammedORCID,Aladhadh Mohammed,Al-Rawashdeh Hazim Saleh

Abstract

Insect pests and crop diseases are considered the major problems for agricultural production, due to the severity and extent of their occurrence causing significant crop losses. To increase agricultural production, it is significant to protect the crop from harmful pests which is possible via soft computing techniques. The soft computing techniques are based on traditional machine and deep learning-based approaches. However, in the traditional methods, the selection of manual feature extraction mechanisms is ineffective, inefficient, and time-consuming, while deep learning techniques are computationally expensive and require a large amount of training data. In this paper, we propose an efficient pest detection method that accurately localized the pests and classify them according to their desired class label. In the proposed work, we modify the YOLOv5s model in several ways such as extending the cross stage partial network (CSP) module, improving the select kernel (SK) in the attention module, and modifying the multiscale feature extraction mechanism, which plays a significant role in the detection and classification of small and large sizes of pest in an image. To validate the model performance, we develop a medium-scale pest detection dataset that includes the five most harmful pests for agriculture products that are ants, grasshopper, palm weevils, shield bugs, and wasps. To check the model’s effectiveness, we compare the results of the proposed model with several variations of the YOLOv5 model, where the proposed model achieved the best results in the experiments. Thus, the proposed model has the potential to be applied in real-world applications and further motivate research on pest detection to increase agriculture production.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3