Detection of Forestry Pests Based on Improved YOLOv5 and Transfer Learning

Author:

Liu Dayang1ORCID,Lv Feng1,Guo Jingtao1,Zhang Huiting1,Zhu Liangkuan1

Affiliation:

1. College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China

Abstract

Infestations or parasitism by forestry pests can lead to adverse consequences for tree growth, development, and overall tree quality, ultimately resulting in ecological degradation. The identification and localization of forestry pests are of utmost importance for effective pest control within forest ecosystems. To tackle the challenges posed by variations in pest poses and similarities between different classes, this study introduced a novel end-to-end pest detection algorithm that leverages deep convolutional neural networks (CNNs) and a transfer learning technique. The basic architecture of the method is YOLOv5s, and the C2f module is adopted to replace part of the C3 module to obtain richer gradient information. In addition, the DyHead module is applied to improve the size, task, and spatial awareness of the model. To optimize network parameters and enhance pest detection ability, the model is initially trained using an agricultural pest dataset and subsequently fine-tuned with the forestry pest dataset. A comparative analysis was performed between the proposed method and other mainstream target detection approaches, including YOLOv4-Tiny, YOLOv6, YOLOv7, YOLOv8, and Faster RCNN. The experimental results demonstrated impressive performance in detecting 31 types of forestry pests, achieving a detection precision of 98.1%, recall of 97.5%, and mAP@.5:.95 of 88.1%. Significantly, our method outperforms all the compared target detection methods, showcasing a minimum improvement of 2.1% in mAP@.5:.95. The model has shown robustness and effectiveness in accurately detecting various pests.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

Reference35 articles.

1. Perception and knowledge of the Sirex woodwasp and other forest pests in South Africa;Hurley;Agric. For. Entomol.,2012

2. Fast and Accurate Detection and Classification of Plant Diseases;Hiary;Int. J. Comput. Appl.,2011

3. Vision-based pest detection based on SVM classification method;Ebrahimi;Comput. Electron. Agric.,2017

4. Detection of insects in bulk wheat samples with machine vision;Zayas;Trans. Am. Soc. Agric. Eng.,1998

5. Detection of small-sized insect pest in greenhouses based on multifractal analysis;Li;Opt.-Int. J. Light Electron Opt.,2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3