Effect of Liquid Nitrogen Freezing Temperature on the Muscle Quality of Litopenaeus vannamei

Author:

Yan Wenda1,Sun Qinxiu12,Zheng Ouyang1,Han Zongyuan1,Wang Zefu1,Wei Shuai1ORCID,Ji Hongwu1,Liu Shucheng1

Affiliation:

1. College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China

2. Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China

Abstract

The implications of different liquid nitrogen freezing (LNF) temperatures (−35 °C, −65 °C, −95 °C, and −125 °C) on the ice crystal and muscle quality of white shrimp (Litopenaeus vannamei) were investigated in this essay. The results showed that better muscle quality was maintained after LNF treatment compared to that after air blast freezing (AF) treatment. As the freezing temperature of liquid nitrogen decrease, the freezing speed accelerated, with the freezing speed of LNF at −125 °C being the fastest. However, an excessively fast freezing speed was not conducive to maintaining the quality of shrimp. Among all the freezing treatments, LNF at −95 °C led to the lowest thawing losses and cooking losses, and the highest L* values, indicating that LNF at −95 °C could keep the water holding capacity of frozen shrimp better than that with other freezing methods. At the same time, LNF at −95 °C resulted in higher water holding capacity, and hardness values for shrimps than those with other frozen treatments (p < 0.05). In addition, the results of the water distribution of shrimps showed that treatment with a −95 °C LNF reduced the migration rate of bound and free water. Meanwhile, the microstructural pores of shrimps in the −95 °C LNF group were smaller, indicating that the ice crystals generated during −95 °C LNF were relatively smaller than those generated via other frozen treatments. In conclusion, an appropriate LNF temperature (−95 °C) was beneficial for improving the quality of frozen shrimp, and avoiding freezing breakage.

Funder

Ocean Young Innovative Talents Project of Zhanjiang

Guangdong Basic and Applied Basic Research Foundation

Special Fund for Scientific and Technological Innovation Srategy of Guangdong Province

General Transfer Payment Fund Project of Fishery Development Support Policy in Guangdong Province in 2022

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3