MAEANet: Multiscale Attention and Edge-Aware Siamese Network for Building Change Detection in High-Resolution Remote Sensing Images

Author:

Yang Bingjie,Huang Yuancheng,Su XinORCID,Guo Haonan

Abstract

In recent years, using deep learning for large area building change detection has proven to be very efficient. However, the current methods for pixel-wise building change detection still have some limitations, such as a lack of robustness to false-positive changes and confusion about the boundary of dense buildings. To address these problems, a novel deep learning method called multiscale attention and edge-aware Siamese network (MAEANet) is proposed. The principal idea is to integrate both multiscale discriminative and edge structure information to improve the quality of prediction results. To effectively extract multiscale discriminative features, we design a contour channel attention module (CCAM) that highlights the edge of the changed region and combine it with the classical convolutional block attention module (CBAM) to construct multiscale attention (MA) module, which mainly contains channel, spatial and contour attention mechanisms. Meanwhile, to consider the structure information of buildings, we introduce the edge-aware (EA) module, which combines discriminative features with edge structure features to alleviate edge confusion in dense buildings. We conducted the experiments using LEVIR-CD and BCDD datasets. The proposed MA and EA modules can improve the F1-Score of the basic architecture by 1.13% on the LEVIR CD and by 1.39% on the BCDD with an accepted computation overhead. The experimental results demonstrate that the proposed MAEANet is effective and outperforms other state-of-the-art methods concerning metrics and visualization.

Funder

National Natural Science Foundation of China

Chang'an University (Xi'an, China) through the National Key Research Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3