Multi-Scale Discrete Cosine Transform Network for Building Change Detection in Very-High-Resolution Remote Sensing Images

Author:

Zhu Yangpeng1,Fan Lijuan1,Li Qianyu1,Chang Jing1

Affiliation:

1. School of Economics and Management, Xi’an Shiyou University, Xi’an 710065, China

Abstract

With the rapid development and promotion of deep learning technology in the field of remote sensing, building change detection (BCD) has made great progress. Some recent approaches have improved detailed information about buildings by introducing high-frequency information. However, there are currently few methods considering the effect of other frequencies in the frequency domain for enhancing feature representation. To overcome this problem, we propose a multi-scale discrete cosine transform (DCT) network (MDNet) with U-shaped architecture, which is composed of two novel DCT-based modules, i.e., the dual-dimension DCT attention module (D3AM) and multi-scale DCT pyramid (MDP). The D3AM aims to employ the DCT to obtain frequency information from both spatial and channel dimensions for refining building feature representation. Furthermore, the proposed MDP can excavate multi-scale frequency information and construct a feature pyramid through multi-scale DCT, which can elevate multi-scale feature extraction of ground targets with various scales. The proposed MDNet was evaluated with three widely used BCD datasets (WHU-CD, LEVIR-CD, and Google), demonstrating that our approach can achieve more convincing results compared to other comparative methods. Moreover, extensive ablation experiments also present the effectiveness of our proposed D3AM and MDP.

Funder

Shaanxi Provincial Department of Science and Technology Fund Project “Shaanxi Provincial Innovation Capability Support Program”

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3