BRRNet: A Fully Convolutional Neural Network for Automatic Building Extraction From High-Resolution Remote Sensing Images

Author:

Shao Zhenfeng,Tang Penghao,Wang Zhongyuan,Saleem NayyerORCID,Yam Sarath,Sommai Chatpong

Abstract

Building extraction from high-resolution remote sensing images is of great significance in urban planning, population statistics, and economic forecast. However, automatic building extraction from high-resolution remote sensing images remains challenging. On the one hand, the extraction results of buildings are partially missing and incomplete due to the variation of hue and texture within a building, especially when the building size is large. On the other hand, the building footprint extraction of buildings with complex shapes is often inaccurate. To this end, we propose a new deep learning network, termed Building Residual Refine Network (BRRNet), for accurate and complete building extraction. BRRNet consists of such two parts as the prediction module and the residual refinement module. The prediction module based on an encoder–decoder structure introduces atrous convolution of different dilation rates to extract more global features, by gradually increasing the receptive field during feature extraction. When the prediction module outputs the preliminary building extraction results of the input image, the residual refinement module takes the output of the prediction module as an input. It further refines the residual between the result of the prediction module and the real result, thus improving the accuracy of building extraction. In addition, we use Dice loss as the loss function during training, which effectively alleviates the problem of data imbalance and further improves the accuracy of building extraction. The experimental results on Massachusetts Building Dataset show that our method outperforms other five state-of-the-art methods in terms of the integrity of buildings and the accuracy of complex building footprints.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect

2. Application of high-resolution stereo satellite images to detailed landslide hazard assessment

3. The Application of High Resolution Satellite Remotely Sensed Data to Landuse Dynamic Monitoring;Yang;Remote Sens. Land Resour.,2001

4. High Spatial Resolution Remotely Sensed Data for Ecosystem Characterization

5. Segmentation of high-resolution remotely sensed data-concepts, applications and problems;Schiewe;Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3