A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images

Author:

Jiang HuiweiORCID,Peng Min,Zhong Yuanjun,Xie Haofeng,Hao Zemin,Lin Jingming,Ma Xiaoli,Hu Xiangyun

Abstract

Change detection based on remote sensing images plays an important role in the field of remote sensing analysis, and it has been widely used in many areas, such as resources monitoring, urban planning, disaster assessment, etc. In recent years, it has aroused widespread interest due to the explosive development of artificial intelligence (AI) technology, and change detection algorithms based on deep learning frameworks have made it possible to detect more delicate changes (such as the alteration of small buildings) with the help of huge amounts of remote sensing data, especially high-resolution (HR) data. Although there are many methods, we still lack a deep review of the recent progress concerning the latest deep learning methods in change detection. To this end, the main purpose of this paper is to provide a review of the available deep learning-based change detection algorithms using HR remote sensing images. The paper first describes the change detection framework and classifies the methods from the perspective of the deep network architectures adopted. Then, we review the latest progress in the application of deep learning in various granularity structures for change detection. Further, the paper provides a summary of HR datasets derived from different sensors, along with information related to change detection, for the potential use of researchers. Simultaneously, representative evaluation metrics for this task are investigated. Finally, a conclusion of the challenges for change detection using HR remote sensing images, which must be dealt with in order to improve the model’s performance, is presented. In addition, we put forward promising directions for future research in this area.

Funder

Chinese National Natural Science Foundation Projects

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3