Adaptive Gait Generation for Hexapod Robots Based on Reinforcement Learning and Hierarchical Framework

Author:

Qiu Zhiying1,Wei Wu12,Liu Xiongding1

Affiliation:

1. School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China

2. The Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education, Unmanned Aerial Vehicle Systems Engineering Technology Research Center of Guangdong, South China University of Technology, Guangzhou 510641, China

Abstract

Gait plays a decisive role in the performance of hexapod robot walking; this paper focuses on adaptive gait generation with reinforcement learning for a hexapod robot. Moreover, the hexapod robot has a high-dimensional action space and therefore it is a great challenge to use reinforcement learning to directly train the robot’s joint angles. As a result, a hierarchical and modular framework and learning details are proposed in this paper, using only seven-dimensional vectors to denote the agent actions. In addition, we conduct experiments and deploy the proposed framework using a real hexapod robot. The experimental results show that superior reinforcement learning algorithms can converge in our framework, such as SAC, PPO, DDPG and TD3. Specifically, the gait policy trained in our framework can generate new adaptive hexapod gait on flat terrain, which is stable and has lower transportation cost than rhythmic gaits.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3