Reward Function and Configuration Parameters in Machine Learning of a Four-Legged Walking Robot

Author:

Kubacki Arkadiusz1ORCID,Adamek Marcin1,Baran Piotr1

Affiliation:

1. Institute of Mechanical Technology, Poznan University of Technology, ul. Piotrowo 3, 60-695 Poznan, Poland

Abstract

In contemporary times, the use of walking robots is gaining increasing popularity and is prevalent in various industries. The ability to navigate challenging terrains is one of the advantages that they have over other types of robots, but they also require more intricate control mechanisms. One way to simplify this issue is to take advantage of artificial intelligence through reinforcement learning. The reward function is one of the conditions that governs how learning takes place, determining what actions the agent is willing to take based on the collected data. Another aspect to consider is the predetermined values contained in the configuration file, which describe the course of the training. The correct tuning of them is crucial for achieving satisfactory results in the teaching process. The initial phase of the investigation involved assessing the currently prevalent forms of kinematics for walking robots. Based on this evaluation, the most suitable design was selected. Subsequently, the Unity3D development environment was configured using an ML-Agents toolkit, which supports machine learning. During the experiment, the impacts of the values defined in the configuration file and the form of the reward function on the course of training were examined. Movement algorithms were developed for various modifications for learning to use artificial neural networks.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3