A Study on a Complex Flame and Smoke Detection Method Using Computer Vision Detection and Convolutional Neural Network

Author:

Ryu Jinkyu,Kwak Dongkurl

Abstract

This study sought an effective detection method not only for flame but also for the smoke generated in the event of a fire. To this end, the flame region was pre-processed using the color conversion and corner detection method, and the smoke region could be detected using the dark channel prior and optical flow. This eliminates unnecessary background regions and allows selection of fire-related regions. Where there was a pre-processed region of interest, inference was conducted using a deep-learning-based convolutional neural network (CNN) to accurately determine whether it was a flame or smoke. Through this approach, the detection accuracy is improved by 5.5% for flame and 6% for smoke compared to when a fire is detected through the object detection model without separate pre-processing.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning-Based Forest Fire Risk Research on Monitoring and Early Warning Algorithms;Fire;2024-04-22

2. A Forest Fire Recognition Method Based on Modified Deep CNN Model;Forests;2024-01-05

3. Improved Fire Safety in the Wildland-Urban Interface Through Smart Technologies;Digital Innovations in Architecture, Engineering and Construction;2024

4. Flame Image Segmentation Method Based on Color Features;2023 5th International Academic Exchange Conference on Science and Technology Innovation (IAECST);2023-12-08

5. Data-Driven Prediction Methods for Real-Time Indoor Fire Scenario Inferences;Fire;2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3