Deep Learning-Based Forest Fire Risk Research on Monitoring and Early Warning Algorithms

Author:

Shang Dongfang12,Zhang Fan3,Yuan Diping2,Hong Le4,Zheng Haoze5,Yang Fenghao6

Affiliation:

1. School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Shenzhen Research Institute, China University of Mining and Technology, Shenzhen 518057, China

3. School of Computer and Information Engineering, Henan University, Kaifeng 475004, China

4. School of Electrical Engineering, Shanghai Dianji Univeristy, Shanghai 201306, China

5. Department of Public and International Affairs, City University of Hong Kong, Kowloon, Hong Kong

6. School of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China

Abstract

With the development of image processing technology and video analysis technology, forest fire monitoring technology based on video recognition is more and more important in the field of forest fire prevention and control. The objects currently applied to forest fire video image monitoring system monitoring are mainly flames and smoke. This paper proposes a forest fire risk monitoring and early warning algorithm, which integrates a deep learning model, infrared monitoring and early warning, and forest fire weather index. The algorithm first obtains the current visible image and infrared image of the same forest area, utilizing a smoke detection model based on deep learning to detect smoke in the visible image, and obtains the confidence level of the occurrence of fire in said visible image. Then, it determines whether the local temperature value of said infrared image exceeds a preset warning value, and obtains a judgment result based on the infrared image. It calculates again a current FWI based on environmental data, and determines a current fire danger level based on the current FWI. Finally, it determines whether or not to carry out a fire warning based on said fire danger level, said confidence level of the occurrence of fire in said visible image, and said judgment result based on the infrared image. The experimental results show that the accuracy of the algorithm in this paper reaches 94.12%, precision is 96.1%, recall is 93.67, and F1-score is 94.87. The algorithm in this paper can improve the accuracy of smoke identification at the early stage of forest fire danger occurrence, especially by excluding the interference caused by clouds, fog, dust, and so on, thus improving the fire danger warning accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3