Data-Driven Prediction Methods for Real-Time Indoor Fire Scenario Inferences

Author:

Zhang Lu12,Mo Like123,Fan Cheng123,Zhou Haijun2ORCID,Zhao Yangping2

Affiliation:

1. Sino-Australia Joint Research Center in BIM and Smart Construction, Shenzhen University, Shenzhen 518000, China

2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518000, China

3. Key Laboratory for Resilient Infrastructures of Coastal Cities, Ministry of Education, Shenzhen University, Shenzhen 518000, China

Abstract

High temperatures, toxic gases, and smoke resulting from indoor fires pose evident threats to the lives of both trapped individuals and firefighters. This study aims to predict indoor fire development effectively, facilitating rapid rescue decisions and minimizing casualties and property damage. A comprehensive database has been developed using Computational Fluid Dynamics (CFD) tools, primarily focused on basic fire scenarios. A total of 300 indoor fire scenarios have been simulated for different fire locations and severity levels. Using fire databases developed from simulation tools, artificial intelligence models have been developed to make spatial–temporal inferences on indoor temperature, CO concentration, and visibility. Detailed analysis has been conducted to optimize sensor system layouts while investigating the variations in prediction accuracy according to different prediction horizons. The research results show that, in combination with artificial intelligence models, the optimized sensor system can accurately predict temperature distribution, CO concentration, and visibility, achieving R2 values of 91%, 72%, and 83%, respectively, while reducing initial hardware costs. The research results confirm the potential of artificial intelligence in predicting indoor fire scenarios and providing practical guidelines for smart firefighting. However, it is important to note that this study has certain limitations, including the scope of fire scenarios, data availability, and model generalization and interpretability.

Funder

National Key R&D Program of China

Philosophical and Social Science Program of Guangdong Province, China

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3