Affiliation:
1. Sino-Australia Joint Research Center in BIM and Smart Construction, Shenzhen University, Shenzhen 518000, China
2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518000, China
3. Key Laboratory for Resilient Infrastructures of Coastal Cities, Ministry of Education, Shenzhen University, Shenzhen 518000, China
Abstract
High temperatures, toxic gases, and smoke resulting from indoor fires pose evident threats to the lives of both trapped individuals and firefighters. This study aims to predict indoor fire development effectively, facilitating rapid rescue decisions and minimizing casualties and property damage. A comprehensive database has been developed using Computational Fluid Dynamics (CFD) tools, primarily focused on basic fire scenarios. A total of 300 indoor fire scenarios have been simulated for different fire locations and severity levels. Using fire databases developed from simulation tools, artificial intelligence models have been developed to make spatial–temporal inferences on indoor temperature, CO concentration, and visibility. Detailed analysis has been conducted to optimize sensor system layouts while investigating the variations in prediction accuracy according to different prediction horizons. The research results show that, in combination with artificial intelligence models, the optimized sensor system can accurately predict temperature distribution, CO concentration, and visibility, achieving R2 values of 91%, 72%, and 83%, respectively, while reducing initial hardware costs. The research results confirm the potential of artificial intelligence in predicting indoor fire scenarios and providing practical guidelines for smart firefighting. However, it is important to note that this study has certain limitations, including the scope of fire scenarios, data availability, and model generalization and interpretability.
Funder
National Key R&D Program of China
Philosophical and Social Science Program of Guangdong Province, China
Shenzhen Science and Technology Program
Subject
Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献