Enhancing Interpretability of Data-Driven Fault Detection and Diagnosis Methodology with Maintainability Rules in Smart Building Management

Author:

Chew Michael Yit Lin1ORCID,Yan Ke1ORCID

Affiliation:

1. Department of the Built Environment, National University of Singapore, 117566, Singapore

Abstract

Data-driven fault detection and diagnosis (FDD) methods, referring to the newer generation of artificial intelligence (AI) empowered classification methods, such as data science analysis, big data, Internet of things (IoT), industry 4.0, etc., become increasingly important for facility management in the smart building design and smart city construction. While data-driven FDD methods nowadays outperform the majority of traditional FDD approaches, such as the physically based models and mathematically based models, in terms of both efficiency and accuracy, the interpretability of those methods does not grow significantly. Instead, according to the literature survey, the interpretability of the data-driven FDD methods becomes the main concern and creates barriers for those methods to be adopted in real-world industrial applications. In this study, we reviewed the existing data-driven FDD approaches for building mechanical & electrical engineering (M&E) services faults and discussed the interpretability of the modern data-driven FDD methods. Two data-driven FDD strategies integrating the expert reasoning of the faults were proposed. Lists of expert rules, knowledge of maintainability, international/local standards were concluded for various M&E services, including heating, ventilation air-conditioning (HVAC), plumbing, fire safety, electrical and elevator systems based on surveys of 110 buildings in Singapore. The surveyed results significantly enhance the interpretability of data-driven FDD methods for M&E services, potentially enhance the FDD performance in terms of accuracy and promote the data-driven FDD approaches to real-world facility management practices.

Funder

National University of Singapore

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3