Impact of Apartment Tightness on the Concentrations of Toxic Gases Emitted During a Fire

Author:

Gałaj Jerzy,Saleta Damian

Abstract

Due to the thermal modernization process of old residential buildings, there has been a significant increase in the air-tightness of apartments, which may contribute to the deterioration of the safety of users and rescue teams in a fire, for example, the emergence of a very dangerous backdraft phenomenon. The aim of the study was to investigate the impact of air-tightness of premises on selected fire parameters in particular toxic gas concentrations, which is the most common cause of deaths of people due to fires. In the research, an experimental method was used, consisting of the measurement of concentrations of gases such as oxygen, carbon monoxide and dioxide, hydrogen sulfide, propylene, acetylene, hydrogen and nitric oxide, and dioxide, which most often give off during a fire due to modern interior design materials. Two fire tests were carried out, one in a sealed apartment and the other unsealed (one window wing half-open). The concentrations of the previously mentioned gases obtained in both tests are presented and then compared with each other. Based on the analysis, conclusions have been formulated, which suggest that increasing the tightness may increase the toxicity of the fire environment.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference14 articles.

1. Określanie czasu procesu bezpiecznej ewakuacji ludności z zagrożonych obiektów;Barański;Zeszyty Naukowe SGSP,2014

2. Toxicity of the fire environment;Półka;Pol. Rev. Aviat. Med.,2010

3. Toxicity of non-metals and their inorganic compounds;Seńczuk,2006

4. Toxicity analysis of thermal decomposition and combustion products obtained from selected epoxy materials;Półka;Saf. Fire Eng.,2010

5. Fire Toxicity;Stec,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3