Reserve Allocation of Photovoltaic Systems to Improve Frequency Stability in Hybrid Power Systems

Author:

Tavakkoli Mehdi,Adabi Jafar,Zabihi Sasan,Godina Radu,Pouresmaeil EdrisORCID

Abstract

This study suggests a model to include a solar power system or photovoltaic system (PV) in the control of frequency by taking into account a percentage of the PV power production for back-up reserve. This is done by investigating two scenarios: PV contribution in (1) initial primary frequency control and (2) entire primary frequency control. As explained in section three, 10% power of the PV modules which receive more than 400 w/m2 irradiation is allocated for the power reserve. The power generation of photovoltaic systems depends largely on weather conditions which makes their output power associated with some degree of uncertainty. For this reason, in this paper, a PV system is considered along with conventional hydro and thermal units and they are modeled in MATLAB/Simulink (version 9.3, MathWorks, Natick, MA, USA) with the purpose of exploring the behavior of the intended method. In the next phase, for further studies, this system is extended to multi-area power systems including gas turbines. The results of the simulation demonstrated that the photovoltaic involvement in the control of frequency can successfully amend the frequency of the overall network. Not only it can decrease the overshoot and undershoot of the frequency response, it has the ability to improve the settling time as well, which helps the system reach the steady state easily and in shorter time. Specifically, the overshoot has reached nearly zero in both one area and two area systems and undershoot has declined up to 60% and 50% in the one area and two-area system, respectively. Considering settling time, while it had a negligible improvement in the one area system, it showed a remarkable enhancement in the two-area system, which improved from about 25 s to 6 s by using the proposed method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3