Frequency Response Analysis of a Single-Area Power System with a Modified LFC Model Considering Demand Response and Virtual Inertia

Author:

,Bukhari SyedORCID,Hazazi Khalid,Haider Zunaib,Haider Raza,Kim Chul-HwanORCID

Abstract

The modern electric power system is foreseen to have increased penetration of controllable loads under demand response programs and renewable energy resources coupled with energy storage systems which can provide virtual inertia. In this paper, the conventional model of an electric power system is appended by considering, individually and collaboratively, the role of demand response and virtual inertia for the purpose of frequency analysis and control. Most existing literature on this topic either considers one of these two roles or lacks in providing a general model of power system with demand response and virtual inertia. The proposed model is presented in general form and can include/exclude demand response and/or virtual inertia. Further, power system operator can opt the power shares from conventional, demand response, and virtual inertia loops for frequency regulation and can also evaluate the impact of other parameters such as time delays and frequency deadbands on system frequency response. The mathematical formulation of steady-state values of frequency deviation and power contribution from all resources is provided and validated by simulation results under various scenarios including a case of wind intermittency.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. Power System Control and Stability;Anderson,2008

2. Demand side management in smart grid: A review and proposals for future direction

3. Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them;Qdr;US Dept. Energy Wash. DC USA Tech. Rep.,2006

4. A summary of demand response in electricity markets

5. Water-filling algorithm based approach for management of responsive residential loads

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3