A Comprehensive Review of Microgrid Energy Management Strategies Considering Electric Vehicles, Energy Storage Systems, and AI Techniques

Author:

Khan Muhammad Raheel1,Haider Zunaib Maqsood1ORCID,Malik Farhan Hameed2ORCID,Almasoudi Fahad M.3ORCID,Alatawi Khaled Saleem S.3ORCID,Bhutta Muhammad Shoaib4ORCID

Affiliation:

1. Department of Electrical Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan

2. Department of Electromechanical Engineering, Abu Dhabi Polytechnic, Abu Dhabi 13232, United Arab Emirates

3. Department of Electrical Engineering, Faculty of Engineering, University of Tabuk, Tabuk 47913, Saudi Arabia

4. School of Automobile Engineering, Guilin University of Aerospace Technology, Guilin 541004, China

Abstract

The relentlessly depleting fossil-fuel-based energy resources worldwide have forbidden an imminent energy crisis that could severely impact the general population. This dire situation calls for the immediate exploitation of renewable energy resources to redress the balance between power consumption and generation. This manuscript confers about energy management tactics to optimize the methods of power production and consumption. Furthermore, this paper also discusses the solutions to enhance the reliability of the electrical power system. In order to elucidate the enhanced reliability of the electrical system, microgrids consisting of different energy resources, load types, and optimization techniques are comprehensively analyzed to explore the significance of energy management systems (EMSs) and demand response strategies. Subsequently, this paper discusses the role of EMS for the proper consumption of electrical power considering the advent of electric vehicles (EVs) in the energy market. The main reason to integrate EVs is the growing hazards of climate change due to carbon emissions. Moreover, this paper sheds light on the growing importance of artificial intelligence (AI) in the technological realm and its incorporation into electrical systems with the notion of strengthening existing smart grid technologies and to handle the uncertainties in load management. This paper also delineates the different methodologies to effectively mitigate the probability of facing cyber-attacks and to make the smart grids invulnerable.

Funder

Department of Education of Guangxi Autonomous Region

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3