Joint contribution of RTEM and AGC system for frequency stabilisation in renewable energy integrated power system

Author:

Debbarma Liza1,Debbarma Sanjoy1ORCID,Roy Kingshuk1,Roy Siddhartha Deb2,Singh Piyush Pratap1

Affiliation:

1. Department of Electrical Engineering National Institute of Technology Meghalaya Shillong India

2. Maulana Azad National Institute of Technology Bhopal Bhopal India

Abstract

AbstractIncreasing penetration of variable renewable generations will diminish system inertia thereby degrading the conventional frequency regulation capability. As a result, maintaining frequency stability will be more and more challenging with traditional approaches. Even though renewable sources integration would jeopardise the grid stability, it also presents several opportunities as well. For example, converter‐interfaced generators can bid in real‐time electricity markets (RTEM) and provide short‐time dispatch to minimise load‐generation mismatch. In this paper, an integrated approach that accommodates discrete automatic generation control (AGC) system with a regulation mileage framework and RTEM model to balance generation and consumption is proposed. The RTEM model is assumed to have a five‐minute dispatch trading interval which is to some extent comparable to the discrete AGC system. Furthermore, a fractional order PID (FOPID) controller is equipped in the AGC system whose parameters are tuned using a novel metaheuristic‐based optimisation called Lichtenberg Algorithm (LA). The proposed framework is tested in a three‐area system under several operating conditions to reveal the improvement in the dynamic performance of the system. The objective function is also incorporated with mileage payment that allows a fair compensation rule for all the units.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3