Analysing active power reserve strategies for photovoltaic systems under varying shading scenarios: a comparative study

Author:

Verma PankajORCID,Katal NitishORCID

Abstract

Abstract The installed capacity of grid-connected solar photovoltaic (PV) systems is increasing rapidly; therefore, in the near future, the total system inertia may possibly decrease. Reserving some active power in PV systems is crucial to manage the problem of low inertia. In this paper, we critically analyse and compare the performances of several active power reserve and frequency regulation techniques for PV systems. The discussed techniques do not use energy storage devices and are aimed at enabling the inertial capabilities of PV systems. These techniques are broadly classified according to the shading conditions and methodologies adopted for reserve generation. In this paper, we closely investigate different deloading techniques used in PV systems. In deloading, PV systems are operated at a voltage distant from the maximum power point. Further, we also address the effectiveness and suitability of the aforementioned techniques under different operating conditions. Through this review paper, we aim to provide a one-stop reference for PV researchers to select appropriately from the available reserve techniques for designing flexible DC–DC controls for PV systems.

Publisher

IOP Publishing

Subject

General Energy

Reference102 articles.

1. Impact of reduced system inertia on stable power system operation and an overview of possible solutions;Spahic,2016

2. Impact of increased penetration of photovoltaic generation on power systems;Eftekharnejad;IEEE Trans. Power Syst.,2013

3. Evaluation and mitigation of power system oscillations arising from high solar penetration with low conventional generation;Pethe,2014

4. Power system dynamic behavior with large scale solar energy integration;Hoballah,2015

5. Stability assessment for transmission systems with large utility-scale photovoltaic units;Bueno;Renew. Power Gener.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3