Electroplated Al Press Marking for Wafer-Level Bonding

Author:

Al Farisi Muhammad SalmanORCID,Tsukamoto Takashiro,Tanaka Shuji

Abstract

Heterogeneous integration of micro-electro mechanical systems (MEMS) and complementary metal oxide semiconductor (CMOS) integrated circuits (ICs) by 3D stacking or wafer bonding is an emerging approach to advance the functionality of microdevices. Aluminum (Al) has been of interest as one of the wafer bonding materials due to its low cost and compatibility with CMOS processes. However, Al wafer bonding typically requires a high temperature of 450 °C or more due to the stable native oxide which presents on the Al surface. In this study, a wafer bonding technique for heterogeneous integration using electroplated Al bonding frame is demonstrated. The bonding mechanism relies on the mechanical deformation of the electroplated Al bonding frame through a localized bonding pressure by the groove structures on the counter wafer, i.e., press marking. The native oxide on the surface was removed and a fresh Al surface at the bonding interface was released through such a large mechanical deformation. The wafer bonding was demonstrated at the bonding temperatures of 250–450 °C. The influence of the bonding temperature to the quality of the bonded substrates was investigated. The bonding shear strength of 8–100 MPa was obtained, which is comparable with the other Al bonding techniques requiring high bonding temperature.

Funder

Japan Society for the Promotion of Science

Division for Interdisciplinary Advanced Research and Education, Tohoku University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3