Dietary Fishmeal Can Be Partially Replaced with Non-Grain Compound Proteins through Evaluating the Growth, Biochemical Indexes, and Muscle Quality in Marine Teleost Trachinotus ovatus

Author:

Su Zeliang1,Ma Yongcai1,Chen Fang1,An Wenqiang1,Zhang Guanrong1,Xu Chao1ORCID,Xie Dizhi1,Wang Shuqi2,Li Yuanyou1ORCID

Affiliation:

1. University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on MBCE, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China

2. Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China

Abstract

In the context of human food shortages, the incorporation of non-grain feedstuff in fish feed deserves more research attention. Here, the feasibility and appropriate ratio of non-grain compound protein (NGCP, containing bovine bone meal, dephenolized cottonseed protein, and blood cell meal) for dietary fishmeal (FM) replacement were explored in golden pompano (Trachinotus ovatus). Four isonitrogenous (45%) and isolipidic (12%) diets (Control, 25NGP, 50NGP, and 75NGP) were prepared. Control contained 24% FM, whereas the FM content of 25NGP, 50NGP, and 75NGP was 18%, 12%, and 6%, respectively, representing a 25%, 50%, and 75% replacement of FM in Control by NGCP. Juvenile golden pompano (initial weight: 9.71 ± 0.04 g) were fed the four diets for 65 days in sea cages. There was no significant difference between the 25NGP and Control groups in terms of weight gain, weight gain rate, and specific growth rate; contents of crude protein, crude lipid, moisture, and ash in muscle and whole fish; muscle textural properties including hardness, chewiness, gumminess, tenderness, springiness, and cohesiveness; and serum biochemical indexes including total protein, albumin, blood urea nitrogen, HDL cholesterol, total cholesterol, and triglycerides. However, the golden pompano in 50NGP and 75NGP experienced nutritional stress, and thus some indicators were negatively affected. In addition, compared to the Control group, the expression levels of genes related to protein metabolism (mtor, s6k1, and 4e-bp1) and lipid metabolism (pparγ, fas, srebp1, and acc1) of the 25NGP group showed no significant difference, but the 4e-bp1 and pparγ of the 75NGP group were significantly upregulated and downregulated, respectively (p < 0.05), which may explain the decline in fish growth performance and muscle quality after 75% FM was replaced by NGCP. The results suggest that at least 25% FM of Control can be replaced by NGCP, achieving a dietary FM content of as low as 18%; however, the replacement of more than 50% of the dietary FM negatively affects the growth and muscle quality of golden pompano.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference69 articles.

1. Role of mycoprotein as a non-meat protein in food security and sustainability: A review;Saeed;Int. J. Food Prop.,2023

2. The contribution of fisheries and aquaculture to the global protein supply;Boyd;Food Secur.,2022

3. Fish matters: Importance of aquatic foods in human nutrition and global food supply;Tacon;Rev. Fish. Sci.,2013

4. NRC (2011). Nutrient Requirements of Fish and Shrimp, National Academies Press.

5. Global fishery prospects under contrasting management regimes;Costello;Proc. Natl. Acad. Sci. USA,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3