Efficiently Substituting Dietary Fish Meal with Terrestrial Compound Protein Enhances Growth, Health, and Protein Synthesis in Largemouth Bass

Author:

Chen Fang1,Ding Zhirong1,Su Zeliang1ORCID,Guan Junfeng1,Xu Chao1,Wang Shuqi2,Li Yuanyou1ORCID,Xie Dizhi1ORCID

Affiliation:

1. College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China

2. Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China

Abstract

Inappropriate substitution of dietary fishmeal (FM) can adversely affect the growth, health, and metabolism of carnivorous fish species. To effectively reduce the amount of dietary FM in carnivorous largemouth bass (Micropterus salmoides), a terrestrial compound protein (Cpro) with chicken meal, bone meal, and black soldier fly protein was used to formulate four isoproteic (52%) and isolipidic (12%) diets, namely T1 (36% FM), T2 (30% FM), T3 (24% FM), and T4 (18% FM), for feeding juveniles (initial weight: ~12 g) for 81 days. Results indicated that the growth performance, feed efficiency, and morphological indicators, as well as muscle texture and edible quality of fish, did not differ significantly among the four groups. However, the muscle protein contents and ATP/AMP ratio of fish in the T4 group were significantly increased in comparison with those of fish in the T1 group, while the opposite was true for muscle glycogen. Compared with the T1 group, high serum total amino acid and MDA contents, as well as low AST activities, were observed in the T3 and T4 groups, and relatively high intestinal trypsin and lipase activities were found in the T2–T4 groups. The transcripts of intestinal proinflammatory cytokines (il-1β, il-6, and tnf-α) were downregulated in the T2–T4 groups compared with T1 group, while the expression of anti-inflammatory cytokines (il-10) and tight junction (zo-1 and occludin) showed the reverse trend. The mRNA expression of positive regulators related to protein synthesis (sirt1, pgc1-α, pi3k, and akt) were significantly upregulated in the muscle of fish fed diets T3 and T4, while their negative regulators (4e-bp1) mRNA levels were downregulated. The results indicate that the dietary FM of largemouth bass could be effectively reduced to at least 18% by the Cpro, which is beneficial to health, digestion, and protein synthesis for maintaining accelerated growth.

Funder

Guangdong Basic and Applied Basic Research Foundation

Guangdong Provincial Key Laboratory of Marine Biotechnology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3