CoSn3 Intermetallic Nanoparticles for Electronic Packaging

Author:

Wang Jintao,Lv Ziwen,Zhang Luobin,Duan Fangcheng,Zhang Weiwei,Chen Hongtao

Abstract

At present, composite solder pastes are getting a lot of attention, especially composite Sn based solders reinforced by nanoparticles. Indeed, CoSn3 is a strong nucleating agent of Sn crystal, which has potential application value in the field of electronic packaging. However, there is no reliable synthetic path for CoSn3 nanoparticles at present. In this article, a chemical synthesis method for CoSn3 nanoparticles is developed. Here, CoCl2 and SnCl2 are reduced by NaHB4 in triethylene glycol (TEG), dispersed by ultrasonics, and heated to 350 °C in a tube furnace for growth. The CoSn3 nanoparticles with a diameter of about 150 nm are obtained by heating at 350 °C for 10 min. The CoSn3 nanoparticles undergo a step reaction in the process of synthesis and go through different stages of merging and annexation during their growth. The crystal growth behavior and the process of orientation change during the nucleation and growth of CoSn3 nanoparticles are studied, especially the two growth mechanisms, namely OU (orientation unified) and OA (orientation attached). By mixing CoSn3 nanoparticles with SAC305, we obtain a kind of strengthened composite soldering paste. There are obvious six-fold cyclic twins in the joints made by this soldering paste.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference15 articles.

1. Genetic Algorithms and Particle Swarm Optimization Mechanisms for Through-Silicon Via (TSV) Noise Coupling;Belaid;Appl. Comput. Intell. Soft Comput.,2021

2. A multi-step etch method for fabricating slightly tapered through-silicon vias based on modified Bosch process;Lin;Microsyst. Technol.,2018

3. A geometric approach to chip-scale TSV shield placement for the reduction of TSV coupling in 3D-ICs;Serafy;Integr. VLSI J.,2014

4. Through-silicon via-induced strain distribution in silicon interposer;Vianne;Appl. Phys. Lett.,2015

5. Elastic and elastic-plastic analysis of multilayer thin films filled with heterogeneous materials;Luo;AIP Adv.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3