Abstract
Learning variable impedance control is a powerful method to improve the performance of force control. However, current methods typically require too many interactions to achieve good performance. Data-inefficiency has limited these methods to learn force-sensitive tasks in real systems. In order to improve the sampling efficiency and decrease the required interactions during the learning process, this paper develops a data-efficient learning variable impedance control method that enables the industrial robots automatically learn to control the contact force in the unstructured environment. To this end, a Gaussian process model is learned as a faithful proxy of the system, which is then used to predict long-term state evolution for internal simulation, allowing for efficient strategy updates. The effects of model bias are reduced effectively by incorporating model uncertainty into long-term planning. Then the impedance profiles are regulated online according to the learned humanlike impedance strategy. In this way, the flexibility and adaptivity of the system could be enhanced. Both simulated and experimental tests have been performed on an industrial manipulator to verify the performance of the proposed method.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献