Cutting Compensation in the Time-Frequency Domain for Smeared Spectrum Jamming Suppression

Author:

Zeng LiORCID,Chen Hui,Zhang Zhaojian,Liu WeijianORCID,Wang Yongliang,Ni Liuliu

Abstract

Smeared spectrum (SMSP) jamming is a new type of distance false-target jamming. It consists of multiple sub-pulses, which results in dense false targets at the radar receiver and affects the detection of target signal. Aiming at the suppression of SMSP jamming, in this paper we propose a fast jamming suppression method based on the time-frequency domain according to the time-frequency distribution characteristic of SMSP jamming. This method completely suppresses SMSP jamming in the time-frequency domain, retains the time-frequency points of the remaining target signal, uses the compensation method to obtain the lost target signal, and then restores the time-frequency distribution characteristic of the target signal. It will not produce jamming sidelobe after the recovered signal matched filtering in the time domain. Moreover, we can obtain the Doppler frequency in the time-frequency domain, which can be adopted in practical engineering applications. The simulation results illustrate the effectiveness of the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference20 articles.

1. Detection of SMSP Jamming in Netted Radar System Based on Fractional Power Spectrum, 2014;Zhao;Proceedings of the 2014 IEEE 17th International Conference on Computational Science and Engineering,2014

2. SMSP jamming identification based on Matched Signal transform, 2011;Li;Proceedings of the 2011 International Conference on Computational Problem-Solving (ICCP),2011

3. Discrimination and identification between mainlobe repeater jamming and target echo by basis pursuit

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3