An Attention-Guided Complex-Valued Transformer for Intra-Pulse Retransmission Interference Suppression

Author:

Wang Yifan12,Li Yibing12ORCID,Zhou Zitao12,Yu Gang3ORCID,Li Yingsong4

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

2. Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin 150001, China

3. School of Electrical Engineering, University of Jinan, Jinan 250024, China

4. Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education, Anhui University, Hefei 230039, China

Abstract

With the maturation of digital radio frequency memory (DRFM) technology, various intra-pulse retransmission interference methods have emerged. These flexible and changeable retransmission interference methods pose significant challenges to radar detection tasks, particularly in modern battlefields. This paper proposes an attention-guided complex-valued transformer (AGCT) as a solution. First, the encoder maps the received signal contaminated by interference and noise into a high-dimensional space. Then, the dilated convolution block (DCB) group and attention block (AB) group in the mask estimator extract the delicate multi-scale features and large-scale features of the interference, respectively, to obtain a multidimensional space mask. Finally, the decoder restores interference to the time domain and outputs the estimated target echo using residual learning. Considering the characteristics of intra-pulse interference, we introduced the energy attention block (EAB) at the end of the DCBs and the ABs within our network. This addition ensures a heightened focus on extracting interference features. Furthermore, we implemented a curriculum learning strategy during the network training. This approach gradually acclimates the network to fit different types of retransmission interference, starting from simpler to more complex scenarios. Our extensive experiments, conducted under various conditions, have provided compelling evidence of the AGCT’s superior performance. Compared to the comparative network, the AGCT’s advantages are particularly pronounced under more harsh conditions, demonstrating its robustness and effectiveness.

Funder

Foundation of National Defense Key Laboratory

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3