Deep Learning-Based Active Jamming Suppression for Radar Main Lobe

Author:

Jiang Yilin1ORCID,Yang Yaozu1ORCID,Zhang Wei1ORCID,Guo Limin1ORCID

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, Harbin, China

Abstract

Due to the development of digital radio frequency memory (DRFM), active jamming against the main lobe of the radar has become mainstream in electronic warfare. The jamming infiltrates the radar receiver via the main lobe, covering up the target echo information. This greatly affects the detection, tracking, and localization of targets by radar. In this study, we consider jamming suppression based on the independence of RF features. First, two stacked sparse auto-encoders (SSAEs) are built to extract the RF characteristics and signal features carried out by the actual radar signal for subsequent jamming suppression. This method can effectively separate RF features from signal features, making the extracted RF features more efficient and accurate. Then, an SSAE-based jamming suppression auto-encoder (JSAE) is proposed; the mixed signal, including the radar signal, jamming signal, and noise, is input to JSAE for dimensionality reduction. Therefore, the radar signal and RF features, extracted by the two SSAEs in the previous step, are used to constrain the features of the reduced mixed signal. Moreover, we integrate the feature level and signal level to jointly achieve jamming suppression. The original radar signal is used to assist the radar signal reconstructed by the decoder. By first filtering out interference-related features and then reconstructing the signal, we can achieve better jamming suppression performance. Finally, the effectiveness of the proposed method is verified by simulating the actual collected data.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3