Compound Jamming Recognition Based on a Dual-Channel Neural Network and Feature Fusion

Author:

Chen Hao1,Chen Hui1,Lei Zhenshuo2,Zhang Liang1ORCID,Li Binbin1,Zhang Jiajia3,Wang Yongliang1

Affiliation:

1. Wuhan Early Warning Academy, Wuhan 430019, China

2. Unit 61516 of PLA, Beijing 100071, China

3. Unit 95980 of PLA, Xiangyang 441021, China

Abstract

Jamming recognition is a significant prior step to achieving effective jamming suppression, and the precise results of the jamming recognition will be beneficial to anti-jamming decisions. However, as the electromagnetic environment becomes more complex, the received signals may contain both suppression jamming and deception jamming, which is more challenging for existing methods focused on a single kind of jamming. In this paper, a recognition method for compound jamming based on a dual-channel neural network and feature fusion is proposed. First, feature images of compound jamming are extracted by the short-time Fourier transform and the wavelet transform. Feature images are then employed as inputs for the proposed network. During parallel processing in dual-channel, the proposed network can adaptively extract and learn task-relevant features via the attention modules. Finally, the output features in dual-channel are fused in the fusion subnetwork. Compared with existing methods, the proposed method can yield better recognition performance with less inference time. Additionally, compared with existing fusion strategies, the fusion subnetwork can further improve the recognition performance under low jamming-to-noise ratio conditions. Results with the semi-measured datasets also verify the feasibility and generalization performance of the proposed method.

Funder

National Natural Science Foundation of China

Enhance Foundation Project of the Wuhan Electronic Information Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3