Abstract
This paper presents a platform that automatically generates custom hardware accelerators for convolutional neural networks (CNNs) implemented in field-programmable gate array (FPGA) devices. It includes a user interface for configuring and managing these accelerators. The herein-presented platform can perform all the processes necessary to design and test CNN accelerators from the CNN architecture description at both layer and internal parameter levels, training the desired architecture with any dataset and generating the configuration files required by the platform. With these files, it can synthesize the register-transfer level (RTL) and program the customized CNN accelerator into the FPGA device for testing, making it possible to generate custom CNN accelerators quickly and easily. All processes save the CNN architecture description are fully automatized and carried out by the platform, which manages third-party software to train the CNN and synthesize and program the generated RTL. The platform has been tested with the implementation of some of the CNN architectures found in the state-of-the-art for freely available datasets such as MNIST, CIFAR-10, and STL-10.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference27 articles.
1. Gradient-Based Learning Applied to Document Recognition;Yann;Proc. IEEE,1998
2. BERTEN, GPU vs. FPGA Performance Comparisonhttp://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献