A Study on the Design Procedure of Re-Configurable Convolutional Neural Network Engine for FPGA-Based Applications

Author:

Kumar Pervesh,Ali Imran,Kim Dong-Gyun,Byun Sung-JuneORCID,Kim Dong-Gyu,Pu Young-Gun,Lee Kang-Yoon

Abstract

Convolutional neural networks (CNNs) have become a primary approach in the field of artificial intelligence (AI), with wide range of applications. The two computational phases for every neural network are; the training phase and the testing phase. Usually, testing is performed on high-processing hardware engines, however, the training part is still a challenge for low-power devices. There are several neural accelerators; such as graphics processing units and field-programmable-gate-arrays (FPGAs). From the design perspective, an efficient hardware engine at the register-transfer level and efficient CNN modeling at the TensorFlow level are mandatory for any type of application. Hence, we propose a comprehensive, and step-by-step design procedure for a re-configurable CNN engine. We used TensorFlow and Keras libraries for modeling in Python, whereas the register-transfer-level part was performed using Verilog. The proposed idea was synthesized, placed, and routed for 180 nm complementary metal-oxide semiconductor technology using synopsis design compiler tools. The proposed design layout occupies an area of 3.16 × 3.16 mm2. A competitive accuracy of approximately 96% was achieved for the Modified National Institute of Standards and Technology (MNIST) and Canadian Institute for Advanced Research (CIFAR-10) datasets.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Acceleration and Implementation of Convolutional Neural Networks on FPGAs;2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2023-12-17

2. Automatic Evaluation of Neural Network Training Results;Computers;2023-01-20

3. Edge Intelligence-Based Seismic Event Detection Using a Hardware-Efficient Neural Network With Field Programmable Gate Array;IEEE Internet of Things Journal;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3