Design and Reliability Analysis of a Tunnel-Detection AUV Based on a Heterogeneous Dual CPU Hot Redundancy System

Author:

Wang XiangbinORCID,Sun Yushan,Wan Lei,Bian Hongyu,Ran XiangruiORCID

Abstract

A water conveyance tunnel is narrow and enclosed with a complex distribution of flow field. The performance of sensors such as Doppler log, magnetic compass, sonar, and depth gauge used by conventional underwater vehicles in the tunnel is greatly affected and can even fail. Aiming at the special operating environment and operational requirements of water conveyance tunnels, this paper designed an architecture suitable for pressurized water conveyance tunnel-detection autonomous underwater vehicles (AUVs). The tunnel-detection AUV (called AUV-T in this paper) with the architecture proposed in this paper could easily and smoothly complete inspection tasks in water conveyance tunnels, and field tests have verified the effectiveness of the architecture. Since an AUV in a water conveyance tunnel cannot go to the surface to rescue itself, in order to ensure its safety we designed the heterogeneous dual-CPU (Central Processing Unit) hot redundancy system based on dual communication lines. The reliability analysis showed that the system can significantly reduce the probability of AUV failure and ensure that the AUV can still be recovered even if it fails in the tunnel.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3