Simultaneous Obstacles Avoidance and Robust Autonomous Landing of a UAV on a Moving Vehicle

Author:

Guo Jinglong,Dong Xin,Gao Yang,Li Daochun,Tu ZhanORCID

Abstract

For unmanned aerial vehicles (UAVs), landing on a moving vehicle robustly is an open challenge, especially under cluttered surroundings with the presence of unknown obstacles. Those undesired environmental factors could induce collisions and thus affect flight safety significantly. Currently, there are few solutions to address such a challenge. In this paper, we propose a systematic autonomous landing scheme that enables the robust autonomous landing performance of a quadrotor UAV. The proposed scheme integrates target detection, state estimation, trajectory planning, and landing control. The position and attitude information of the target ground vehicle and the test quadrotor are estimated by the onboard vision system and GPS. In order to detect landing markers at different altitudes, a particular landing pad with an Apriltag bundle is implemented. As a typical aerial–terrestrial cooperation system, the trajectory planner of the quadrotor updates continuously to avoid obstacles via real-time sensing and re-planning. A finite state machine is used to label the current flight status and triggers the control laws correspondingly. The effectiveness of the proposed method has been validated in a high-fidelity simulator with environmental obstacles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference21 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-Cost Computer-Vision-Based Embedded Systems for UAVs;Robotics;2023-10-27

2. Aerodynamics of Landing Maneuvering of an Unmanned Aerial Vehicle in Close Proximity to a Ground Vehicle;SAE International Journal of Advances and Current Practices in Mobility;2023-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3