Low-Cost Computer-Vision-Based Embedded Systems for UAVs

Author:

Ortega Luis D.1,Loyaga Erick S.1,Cruz Patricio J.2ORCID,Lema Henry P.3ORCID,Abad Jackeline2ORCID,Valencia Esteban A.1ORCID

Affiliation:

1. Grupo de Investigación de Aeronáutica y Termofluidos Aplicada, Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional, Av Ladrón de Gevara E11-253, Quito 170525, Ecuador

2. Departamento de Automatización y Control Industrial, Facultadad de Eléctrica y Electrónica, Escuela Politécnica Nacional, Quito 170525, Ecuador

3. Department of Computer Science, Faculty of Engineering, University of Freiburg, Freiburg im Breisgau Georges-Köhler-Allee 106, 79110 Freiburg, Germany

Abstract

Unmanned Aerial Vehicles (UAVs) are versatile, adapting hardware and software for research. They are vital for remote monitoring, especially in challenging settings such as volcano observation with limited access. In response, economical computer vision systems provide a remedy by processing data, boosting UAV autonomy, and assisting in maneuvering. Through the application of these technologies, researchers can effectively monitor remote areas, thus improving surveillance capabilities. Moreover, flight controllers employ onboard tools to gather data, further enhancing UAV navigation during surveillance tasks. For energy efficiency and comprehensive coverage, this paper introduces a budget-friendly prototype aiding UAV navigation, minimizing effects on endurance. The prototype prioritizes improved maneuvering via the integrated landing and obstacle avoidance system (LOAS). Employing open-source software and MAVLink communication, these systems underwent testing on a Pixhawk-equipped quadcopter. Programmed on a Raspberry Pi onboard computer, the prototype includes a distance sensor and basic camera to meet low computational and weight demands.Tests occurred in controlled environments, with systems performing well in 90% of cases. The Pixhawk and Raspberry Pi documented quad actions during evasive and landing maneuvers. Results prove the prototype’s efficacy in refining UAV navigation. Integrating this cost-effective, energy-efficient model holds promise for long-term mission enhancement—cutting costs, expanding terrain coverage, and boosting surveillance capabilities.

Funder

Escuela Politecnica Nacional

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Reference45 articles.

1. Melita, C.D., Longo, D., Muscato, G., and Giudice, G. (2014). Handbook of Unmanned Aerial Vehicles, Springer.

2. Collecting field data in volcanic landscapes using small UAS (sUAS)/drones;Jordan;J. Volcanol. Geotherm. Res.,2019

3. Schroth, L. (2020). Drone Market Size 2020–2025, Drone Industry Insights. Technical Report.

4. Drones in Archaeology. State-of-the-art and Future Perspectives;Campana;Archaeol. Prospect.,2017

5. Applications of Unmanned Aerial Vehicles in Geosciences: Introduction;Niedzielski;Pure Appl. Geophys.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3