Aerodynamics of Landing Maneuvering of an Unmanned Aerial Vehicle in Close Proximity to a Ground Vehicle

Author:

Uddin Mesbah1,Nichols Spencer1,Hahn Cortney1,Misar Adit1,Desai Shishir1,Tison Nathan2,Korivi Vamshi2

Affiliation:

1. University of North Carolina Charlotte

2. US Army DEVCOM GVSC

Abstract

<div class="section abstract"><div class="htmlview paragraph">Autonomous takeoff and landing maneuvers of an unmanned aerial vehicle (UAV) from/on a moving ground vehicle (GV) have been an area of active research for the past several years. For military missions requiring repeated flight operations of the UAV, precise landing ability is important for autonomous docking into a recharging station, since such stations are often mounted on a ground vehicle. The development of precise and efficient control algorithms for this autonomous maneuvering has two key challenges; one is related to flight aerodynamics and the other is related to a precise detection of the landing zone. The aerodynamic challenges include understanding the complex interaction of the flows over the UAV and GV, potential ground effects at the proximity of the landing surface, and the impact of the variations in the surrounding wind flow and ambient conditions. While a large body of work in this area can be found on the control aspect of the UAV landing and takeoff maneuvers, research on the aerodynamic aspects of such maneuvers is non-existent. This paper presents an in-depth computational fluid dynamics (CFD) based aerodynamic characterization of the transient flow fields associated with the landing of a hobby-model quadcopter (the UAV) on an idealized road vehicle (the GV), the 35-degree slant angle Ahmed body. Transient improved delayed detached eddy simulations (IDDES) are carried out using the commercial CFD code STAR-CCM+. Our study indicates that the pressure field is the first flow property that gets impacted by the proximity of the UAV to the GV.</div></div>

Publisher

SAE International

Subject

Artificial Intelligence,Mechanical Engineering,Fuel Technology,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3