Bias Temperature Instability Aware and Soft Error Tolerant Radiation Hardened 10T SRAM Cell

Author:

Shah Ambika PrasadORCID,Waltl MichaelORCID

Abstract

In this paper, we propose an asymmetric radiation-hardened 10T (AS10T) SRAM cell and analyze the impact of bias temperature instabilities (BTI) on the single event upset of the modified structure. For this, we make use of a read decoupled circuit to improve the stability of the reading cycle, and a charge booster circuit to increase the critical charge at the sensitive node of the SRAM cell. First, we compare the noise margin of several reference cells and can clearly observe that the read static noise margin (RSNM) of AS10T is 3.25× higher than as can be achieved for the 6T SRAM cell. This improvement is due to the read decoupled path used for the read operation. To analyze the soft-error hardening, we calculate the critical charge and observe that the critical charge of the proposed AS10T cell exceed the same parameter of other SRAM cells. Further, we perform critical charge simulations and stability analysis considering BTI and observe that the AS10T SRAM cell is also less affected by BTI as the reference cells.

Funder

Austrian Research Promotion Agency FFG

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3